

Isabelle Tutorial:
System, HOL and Proofs

 Burkhart Wolff

Université Paris-Sud

What we will talk about

What we will talk about
 Isabelle with:

! its System Framework
! the Logical Framework
! the Isabelle/HOL Environment
! Proof Contexts and Structured Proof
! Tactic Proofs (“apply style”)

The Isabelle

Logical Framework (I)

Overview
! A Universal Notion of Terms & Types:

Curry-Style Typed λ Calculus with Type-Classes
! A Universal Notion of Rule: Isabelle/Pure
! A Gentle Introduction to HOL
! Forward Proofs
! Backward Proofs
! ML-Level Proofs
! System Architecture
! Conclusion

Isabelle Kernel: Types and Terms
! A Typed Lambda-Calculus without frills.
! Types:

– type classes X (* eg. order, lattice *)

– type constructors κ (* eg. bool, list,_x_*)

– type variables [and actually schematic type variables ?α]
– types τ ::= prop | τ ⇒ τ | (τ τ"$$$") | κ α%%&X " $$$" X}

! Terms:
– variable symbols: V = {x1,x2,...} [and actually ?V's too]

– constant symbols: C = {c1,c2,...}

– term ::= V::τ | C::τ | term term | l V::τ . term
– Isabelle offers powerful pretty-printing: (_ + _) t t' == t + t' !!

Isabelle Kernel: Typed Terms
! Well-typed terms (cterm's):

the usual type inference system.

! Congruences on cterm's:
– equality on cterm is αβη congruence
– α λ% x. t ' λy. t[x ↦ y]
– β % (λx. t) t' ' t[x ↦ t']
– η % (λx. t) ' t (provided x not occuring in t)
– equality for well-typed terms decidable.

Isabelle Kernel: Global Contexts
! Global Contexts T, i.e. Theories,
i.e. inductively defined sets of pairs pair of:

– Signature S (types, constants,syntax)
where S ' C ↦ τ
 (a partial map from constant symbols to types τ)

– Axioms A (a partial map of names to “thm”s))

 where thm's are triples:

 Γ ⊢T φ

• with a set ofΓ assumptions, i.e. cterm's of type prop
• with the conclusion φ, i.e. a ctem of type prop
• with T the context in which this thm is valid.

Isabelle Kernel: Commands as
global context transactions

! Theory Extensions are:
Signature S (types, constants,syntax)
Axioms A (set of formulas)

(S, A) ”∈ ” T
 command denoting global
 context transition

(S', A') ”∈ ” T'

Isabelle Kernel: Commands as
global context transactions

! Theory Extensions are:
Signature S (types, constants,syntax)
Axioms A (set of formulas)

(S, A) ”∈ ” T

(S + {C↦τ}, A) ”∈ ” T'

consts <c> :: “<τ>”

Isabelle Kernel: Commands as
global context transactions

! Theory Extensions are:
Signature S (types, constants,syntax)
Axioms A (set of formulas)

(S, A) ”∈ ” T

(S, A + {name ↦ φ ! $$$}) ”∈ ” T'

axiomatization <c>
where <name>:"<φ>"

axiomatization <c>
where <name>:"<φ>"

Isabelle Kernel: Commands as
global context transactions

! Theory Extensions (roughly speaking) are:
Signature S (types, constants,syntax)
Axioms A (set of formulas)

(S, A) ”∈ ” T

(S, A + {name ↦ φ ! $$$}) ”∈ ” T'

Do
n't

 us
e t

his

eve
r d

ire
ctl

y !
!!

! Pure is a logical meta-language, i.e. the built-in
language in which logical rules as such can be
represented.

! It consists of typed λ#terms with constants:
foundational types “prop” and “_ => _” (“_ ⇒_”)
the Pure (universal) quantifier
 all :: “(α ⇒ Prop) ⇒ Prop”

 (“⋀x. P x”,“\<And> x. P x” “!!x. P x”)

the Pure implication “A ==> B” (“_ ⟹ _”)
the Pure equality “A == B” “A B”≡

Isabelle Kernel:
The initial global context „Pure“

Isabelle Kernel:
The initial global context „Pure“

! Pure is the meta-language, i.e. the built-in
formula language (“inner syntax”).

! Equivalent notations for natural deduction rules:

 A1 (… (A⟹ ⟹ n A⟹ n+1)...),

 A⟦ 1; …; An A⟧ ⟹ n+1,

theorem
 assumes A1

 and …

 and An

 shows An+1

Isabelle Kernel:
The initial global context „Pure“

! Pure is the meta-language, i.e. the built-in
formula language (“inner syntax”).

! Equivalent notations for natural deduction rules:

 (P Q) R : ⟹ ⟹

 theorem
assumes "P Q"⟹

 shows "R"

Isabelle Kernel:
The initial global context „Pure“

! Pure provides a built-in formula-language, a
is the meta-language.

! Equivalent notations for natural deduction rules:

 (⋀ a. P a ⟹ Q a) R : ⟹

theorem
 fixes a
 assumes “P a Q a”⟹
 shows R

Isabelle Specification Constructs

! Methodology to use only logically safe
(„conservative“) Theory Extensions.
These are:

constant definition
type definition
constant specification
type specification

Advanced Isabelle
Specification Constructs

! Methodology to use only logically safe
(„conservative“) Theory Extensions.
These are:

datatype definition
inductive definition
primrec , fun definitions
type specification

Isabelle Specification Constructs

! Constant definition:

(S, A) ”∈ ” T

(S + {c :: τ}, A + {name ↦ c ≡ φ }) ”∈ ” T'

• where c is “fresh” in T
• φ is closed

• φ is type variable closed

definition <c> :: “<τ>”
where <name>:"<c ≡ φ>"

Some Commands for Inspection
! Some Isabelle document commands serve

to inspect the document content.
checking a type expression:

 example: typ “prop ⇒ prop”

checking a term expression:

 example: term “λx. x“

prop “<τ>”

 term “<t>”

Some Statements (for Inspection)
! We can state (not yet prove)

lemmas and theorems:
a lemma:

example: lemma nix: “A A” sorry⇒

a theorem:

 example: term “λx. x“

theorem <name>:
fixes V ...
assumes “<φ>”
shows “<φ>” <proof>

lemma <name>: “<φ>”
<proof>

Exercise demo2.thy
! Build a theory in “Main”

(which is actually the brand-name for
“Higher-order Logic“ (HOL) to be discussed next)

! Check some types
! Check some propositions
! State lemmas (proof by „sorry“ or „oops“)
! State a theorem in structured syntax
! State an Axiom and a Definition

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

